miércoles, 3 de junio de 2015

¿Que es el magnetismo?






El magnetismo o energía magnética es un fenómeno físico por el cual los objetos ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influidos, de mayor o menor forma, por la presencia de un campo magnético.






Cada electrón es, por su naturaleza, un pequeño imán (véase momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados.

Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica que circula por una bobina (ver dipolo magnético). De nuevo, en general el movimiento de los electrones no da lugar a un campo magnético en el material, pero en ciertas condiciones los movimientos pueden alinearse y producir un campo magnético total medible.

El comportamiento magnético de un material depende de la estructura del material y, particularmente, de la configuración electrónica.




HISTORIA





Los fenómenos magnéticos fueron conocidos por los antiguos griegos. Se dice que por primera vez se observaron en la ciudad de Magnesia del Meandro en Asia Menor, de ahí el término magnetismo. Sabían que ciertas piedras atraían el hierro, y que los trocitos de hierro atraídos atraían a su vez a otros. Estas se denominaron imanes naturales.

El primer filósofo que estudió el fenómeno del magnetismo fue Tales de Mileto, filósofo griego que vivió entre 625 a. C. y 545 a. C.1 En China, la primera referencia a este fenómeno se encuentra en un manuscrito del siglo IV a. C. titulado Libro del amo del valle del diablo: «La magnetita atrae al hierro hacia sí o es atraída por éste».2 La primera mención sobre la atracción de una aguja aparece en un trabajo realizado entre los años 20 y 100 de nuestra era: «La magnetita atrae a la aguja».

El científico Shen Kua (1031-1095) escribió sobre la brújula de aguja magnética y mejoró la precisión en la navegación empleando el concepto astronómico del norte absoluto. Hacia el siglo XII los chinos ya habían desarrollado la técnica lo suficiente como para utilizar la brújula para mejorar la navegación. Alexander Neckham fue el primer europeo en conseguir desarrollar esta técnica en 1187.

Peter Peregrinus de Maricourt, fue un estudioso francés del siglo XIII que realizó experimentos sobre magnetismo y escribió el primer tratado existente para las propiedades de imanes. Su trabajo se destaca por la primera discusión detallada de una brújula. El cosmógrafo español Martín Cortés de Albacar, formado en Zaragoza y en la escuela de pilotos de Cádiz, descubrió y situó el polo magnético en Groenlandia en 1551 para los navegantes españoles e ingleses (su libro fue traducido y muy reimpreso en Inglaterra) facilitando así considerablemente la navegación. Galileo Galilei y su amigo Francesco Sagredo se interesaron en el magnetismo engastando un buen trozo de roca magnética de más de kilo y medio en un bello artilugio de madera; la magnetita se disponía de tal manera que, a modo de imán, atraía una bola de hierro de casi cuatro kilos de peso; pero la falta de aplicaciones prácticas y económicas del invento desalentó más experimentación por parte de estos destacados científicos italianos.3 En 1600 el médico y físico William Gilbert publicó en Londres su obra De magnete, magneticisque corporibus, et de magno magnete tellure; Physiologia noua, plurimis & argumentis, & experimentis demostrata("Sobre el imán y los cuerpos magnéticos y sobre el gran imán la Tierra"), para abreviar citado como De magnete, que estableció las bases del estudio profundo del magnetismo consignando las características y tipologías de los imanes y realizando todo tipo de experimentos cuidadosamente descritos. Observó que la máxima atracción ejercida por los imanes sobre los trozos de hierro se realizaba siempre en las zonas llamadas "polos" del imán. Clasificó los materiales en conductores y aislantes e ideó el primer electroscopio. Descubrió la imantación por influencia y fue el primero en apercibir que la imantación del hierro se pierde al calentarlo al rojo. Estudió la inclinación de una aguja magnética concluyendo que la Tierra se comporta como un gran imán.

El conocimiento del magnetismo se mantuvo limitado a los imanes hasta que en 1820 Hans Christian Ørsted, profesor de la Universidad de Copenhague, descubrió que un hilo conductor sobre el que circulaba una corriente que ejercía una perturbación magnética a su alrededor, que llegaba a poder mover una aguja magnética situada en ese entorno.4Muchos otros experimentos siguieron con André-Marie Ampère, Carl Friedrich Gauss, Michael Faraday y otros que encontraron vínculos entre el magnetismo y la electricidad.James Clerk Maxwell sintetizó y explicó estas observaciones en sus ecuaciones de Maxwell. Unificó el magnetismo y la electricidad en un solo campo, el electromagnetismo. En 1905, Einstein usó estas leyes para comprobar su teoría de la relatividad especial,5 en el proceso mostró que la electricidad y el magnetismo estaban fundamentalmente vinculadas.








ELECTROMAGNETOS

Un electroimán es un imán hecho de alambre eléctrico bobinado en torno a un material magnético como el hierro. Este tipo de imán es útil en los casos en que un imán debe estar encendido o apagado, por ejemplo, las grandes grúas para levantar chatarra de automóviles.

Para el caso de corriente eléctrica se desplazan a través de un cable, el campo resultante se dirige de acuerdo con la regla de la mano derecha. Si la mano derecha se utiliza como un modelo, y el pulgar de la mano derecha a lo largo del cable de positivo hacia el lado negativo ( "convencional actual", a la inversa de la dirección del movimiento real de los electrones), entonces el campo magnético hace una recapitulación de todo el cable en la dirección indicada por los dedos de la mano derecha. Como puede observarse geométricamente, en caso de un bucle o hélice de cable, está formado de tal manera que el actual es viajar en un círculo, a continuación, todas las líneas de campo en el centro del bucle se dirigen a la misma dirección, lo que arroja un 'magnética dipolo ' cuya fuerza depende de la actual en todo el bucle, o el actual en la hélice multiplicado por el número de vueltas de alambre. En el caso de ese bucle, si los dedos de la mano derecha se dirigen en la dirección del flujo de corriente convencional (es decir, el positivo y el negativo, la dirección opuesta al flujo real de los electrones), el pulgar apuntará en la dirección correspondiente al polo norte del dipolo.







LEVITACION MAGNETICA


La levitación magnética, también conocida por su acrónimo inglés Maglev, es un método por el cual un objeto es mantenido a flote por acción únicamente de un campo magnético. En otras palabras la presión magnética se contrapone a la gravedad. Cabe decir que cualquier objeto puede ser levitado siempre y cuando el campo magnético sea lo suficientemente fuerte.




El teorema de Earnshaw demuestra que utilizando únicamente el ferromagnetismo estático es imposible hacer a un objeto levitar establemente contra la gravedad, pero el uso de materiales diamagnéticos, servomecanismos o superconductor hacen posible dicha levitación.





Las aplicaciones más comunes de la levitación magnética son los trenes Maglev, el rodamiento magnético, y la levitación de productos para su exposición. En un futuro, y si llegamos a controlar la fusión nuclear, otra utilidad de la levitación magnética podría ser la levitación del plasma. Esta sería la única manera posible ya que los millones de grados a los que ocurre este fenómeno derretirian cualquier contenedor.




TREN DE LEVITACIÓN MAGNÉTICA








El transporte de levitación magnética, o tipo maglev, es un sistema de transporte que incluye la suspensión, guía y propulsión de vehículos, principalmente trenes, utilizando un gran número de imanes para la sustentación y la propulsión a base de la levitación magnética.

Este método tiene la ventaja de ser más rápido, silencioso y suave que los sistemas de transporte colectivo sobre ruedas convencionales. La tecnología de levitación magnética tiene el potencial de superar 6.440 km/h (4.000 mph) si se realiza en un túnel al vacío.1 Cuando no se utiliza un túnel al vacío, la energía necesaria para la levitación no suele representar una gran parte de la necesaria, ya que la mayoría de la energía necesaria se emplea para superar la resistencia del aire, al igual que con cualquier otro tren de alta velocidad.

La mayor velocidad obtenida hasta ahora fue de 603 km/h en la ruta Yamanashi el 21 de abril de 2015.2 Unos días antes llegó a alcanzar los 590 km/h,3 el 16 de abril de 2015, en la misma ruta, siendo 15 km/h más rápido que el récord de velocidad del TGV convencional